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Abstract 

A comprehensive Weather Research and Forecasting with Chemistry (WRF-Chem) model evaluation is 
conducted using ground-based and total column observational data from air quality stations and satellite 
retrievals. Fine particles (PM2.5; ≤ 2.5 µm in aerodynamic diameter), nitrogen oxides (NOx, NO + NO2), carbon 
monoxide (CO), tropospheric ozone (O3) concentrations and AOD values over southeastern Brazil were analyzed 
to assess the model's capability in reproducing atmospheric observation. The model simulations were performed 
over simple one domain at grid resolution of 10 km over southeastern Brazil. This spatial resolution was chosen 
due to a previous evaluation between five MODIS AOD products with AERONET estimates, resulting in Dark 
Target at 10 km of spatial resolution the best product to represent the AOD values over our study domain. Model 
input emissions comprise vehicular emissions derived from a bottom-up emission model, as well as on-line 
calculations of biogenic and fire emission rates. Given that the atmospheric state affects air pollution dispersion, 
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a model evaluation on the meteorological conditions was carried out to better evaluate the model performance in 
reproducing the pollutant concentrations. Good agreement between model simulations and observations for air 
temperature and relative humidity at 2 meters height was found, with correlation coefficients higher than 0.85 in 
most periods. Expected benchmarks for wind speed and direction at 10 meters height were also found in this 
analysis, though with larger uncertainties. Underestimation occurred for daily accumulated precipitation due to 
the limitations of the cloud microphysics scheme or cumulus parameterization. Model simulations of PM2.5, NOx, 
CO and O3 agreed well with ground-based observations in terms of temporal variations and trends, with 
model-observation discrepancies due to uncertainties in the emission inventories. O3 was the better simulated 
pollutant in terms of temporal variability, with the characteristic large and small amplitudes observed over urban 
and rural areas being well represented by the model. High O3 concentrations were observed at the Botucatu 
station, due to transport of pollutants generated in the Metropolitan Area of São Paulo, and were also represented 
by the model, indicating the need of more active air quality monitoring stations over inland regions in 
southeastern Brazil. Moderate and high correlation coefficients (ranging 0.46 - 0.81) were found for tropospheric 
NO2 VCD and CO column, and AOD at 550 nm due to uncertainties in the emission inventories and aerosol 
model simplifications. Both the model and satellite captured higher values in similar regions over our study 
domain. This work represents a first effort, in southeastern Brazil, that combines numerical modeling, remote 
sensing and ground-based stations to analyze and understand the impact exerted by the emissions of urban 
pollution over surrounding areas. A more in-depth analysis of the impact of emissions transport to inland regions 
from urban areas in southeastern Brazil will be discussed in the second part of this work. 

Keywords: Air pollution; WRF-Chem model; Air Quality station; AERONET; satellite products. 

1. Introduction 

Air pollution is a big problem, and although, in many places, the concentrations of pollutants are decreasing, 
they are still above the values recommended by the WHO (2021). This is basically related to population growth, 
mainly in urban and industrial areas where transportation and industries are often regarded as the main sources of 
air pollution (Lacasaña et al., 1999). The State of São Paulo, located in southeastern Brazil, has an area of 
approximately 249,000 km2 (2.9 % of the national territory), a population of roughly 46.3 million inhabitants (22 
% of Brazil) (IBGE, 2020), greater economic development (agricultural - especially sugar and alcohol, industrial 
and services) and the largest automotive fleet. Its air pollution can be attributed mainly to the vehicular fleet and 
industrial processes (Andrade et al., 2015). The Metropolitan Area of São Paulo (MASP), the largest urban 
center in Brazil, has a fleet of over 7 million vehicles (CETESB, 2019), representing one the major contributors 
to air pollution in this region (Pérez-Martínez et al., 2015). Past studies have shown that over the state of São 
Paulo, NOx concentrations have reached a maximum value of 100 ppb, mainly rush hour traffic (Andrade et al., 
2015; Vera-Vela et al., 2016; Gavidia-Calderón et al., 2018). NOx is a primary pollutant and very difficult to 
evaluate due to the impact of local emissions from mobile sources on the concentrations measured at the air 
quality stations (Andrade et al., 2015; CETESB, 2021). This pollutant contributes to the O3 formation, 
registering high concentrations of up 190 μg m-3 around 15 hours UTC. In the MASP, the anthropogenic fraction 
which emits VOCs is related to the use of fossil fuels by transportation and industrial processes (Brito et al., 
2015 and Dominutti et al., 2020). Both the VOCs and NOx act as O3 precursors. On the other hand, PM2.5 

concentrations depend more on the formation of secondary aerosols (CETESB, 2021). High PM2.5 concentrations 
can be registered by the air quality stations in São Paulo, produced by aerosol transport from biomass burns in 
the Amazon. Previous works have shown that the air quality in São Paulo has been affected by such events 
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(Nascimento, 2020; Vera-Vela et al., 2021). In relation to meteorological conditions, over the state of São Paulo, 
high pollutant concentrations are measured during the dry period, which is associated with favorable atmospheric 
conditions of less rainfall and high temperatures. 

Since 1960, the MASP and other Brazilian cities began to grow more rapidly, generating a chaotic urbanization 
and an increase in sources of air pollution. To monitor the air quality in the State of São Paulo, an environmental 
agency (Companhia Ambiental do Estado de São Paulo, CETESB) was created in the late 1960s. Over a decade 
later, an air pollution control plan was designed to reduce the concentrations of particulates and sulfur dioxide 
(SO2). The first action was the relocation of industrial plants located within urban centers to the interior of the 
State of São Paulo or to other Brazilian States. Cleaner technologies and production practices were then 
implemented in the industries to reduce their emissions and keep the related air pollutant concentrations within 
the primary air quality standards (CETESB, 2019). In 1975, the National Ethanol Program (PROALCOOL) was 
created in order to reduce CO emissions from the vehicle fleet, stimulating the use of ethanol as fuel (thus 
creating gasohol: a mixture of ethanol and gasoline) (Andrade et al., 2017). Later, in 1986, the National Council 
for the Environment (CONAMA) established the Programa de Controle de Poluição do Ar por Veículos 
Automotores (PROCONVE), a vehicle emission control strategy for the reduction of emissions from new 
vehicles, using air quality standards similar to the primary standards adopted by the US Environmental 
Protection Agency (https://www.epa.gov/criteria-air-pollutants/naaqs-table). Despite the efforts made to create 
several programs with the purpose of reducing both industrial and vehicular emissions, concentrations of 
secondary pollutants such as O3 and PM2.5 have not reduced over time (Andrade et al., 2012 ; Pérez-Martínez et 
al., 2015). Even though CETESB air quality monitoring network continuously operates throughout the State of 
São Paulo, the measurement sites are not spatially well distributed over the region. In this way, satellite 
remote-sensing technologies and chemical transport models represent powerful tools in monitoring air quality in 
rural or remote regions where no ground-based monitoring network exists (Chudnovsky et al., 2014). Although 
they provide limited quantitative information on air quality compared with ground-based monitoring (Valin et 
al., 2011; Benavente, 2014), they are useful for air quality research on identifying the location of peak 
concentrations and determining concentration gradients between surface monitoring stations (Benavente, 2014; 
Roy et al., 2017). Also, they can be used to evaluate the impacts of the regional transport of air pollutants from 
densely populated areas. 

Several studies have applied the WRF-Chem model to simulate the air quality over MASP, most of them 
focusing on gaseous species (Silva et al., 2013; Albuquerque et al., 2018; Gavidia-Calderón et al., 2018; Schuch 
et al., 2018) and just a few on aerosols (Vara-Vela et al., 2016, 2018). Andreão et al. (2020) showed the relevance 
of using local anthropogenic emission inventories, where the distribution of pollutant plumes distinguishes local 
hot spots and spatial features that correlate with point sources and highways. Vara-Vela et al. (2016) evaluated 
the impact of vehicular emissions on the formation of PM2.5 over MASP using the WRF-Chem model. They 
showed that the vehicular emission of primary gases led to the formation of secondary aerosol particles, with 
more than 40 % of the PM2.5 formation being attributed to the emission of hydrocarbons (mainly aromatic). 
Gavidia-Calderón et al. (2018) evaluated the impact of using static and time-dependent chemical boundary 
conditions on WRF-Chem ozone simulations over MASP. They found that WRF-Chem performed better when 
time-dependent chemical boundary conditions were used, with improvements being more significant during 
periods with lower photochemical activity. 

Regarding the use of remote sensing, there are several global observations available for a wide range of 
atmospheric pollutants (e.g., MODIS, MOPITT, OMI, among others). However, there are few studies 
(Damascena et al., 2021; Vara-Vela et al., 2018, 2021) that use satellite products together with model simulations 
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and ground-based stations to study air quality over southeastern Brazil, mainly over the MASP. This combination 
of tools will reinforce the understanding of the urban pollutants formation and transport, and how this urban 
pollution affects surrounding areas. 

Therefore, the study focuses on assessing the model's capability in reproducing atmospheric pollutant 
concentrations and how they contribute to air pollution in nearby and far regions. We analyzed the spatial and 
temporal variability of NOx, CO and O3 and PM2.5 concentrations and AOD values from ground-based stations 
and satellite retrievals. The model simulations were performed over a simple one domain at grid resolution of 9 
km over southeastern Brazil during the dry season. Simulated data were compared against each other using a set 
of statistical indices and the study periods were chosen due to the availability of satellite data, shown in section 
3.1. The results are presented in two papers. This first paper describes the model and the data sets used for the 
model evaluation. A second paper will focus on analyzing and understanding the transport from urban emissions 
to inland regions. 

2. Methodology 

2.1. Study area 

The State of São Paulo has 21 % of the Brazilian inhabitants and is located in the southeast of Brazil. The MASP, 
one of the largest urban centers in the world, is located at around 23°S-latitude and 46°W-longitude within the 
State of São Paulo (Fig. 1). It has a total area of 7.946 km2 (of which approximately 2.200 km2 is highly 
urbanized) with an average altitude of 720 m (CETESB, 2017) above sea level. The city is on a plateau placed 
beyond the Serra do Mar, about 70 kilometers from the Atlantic Ocean. In some urbanized areas of São Paulo the 
terrain is roll, except in the northern area, where the Serra da Cantareira Range reaches a higher elevation. São 
Paulo is a disorganized urbanization and this caused an increase in the number of air pollution sources, which 
caused a critical situation in terms of air quality. The climate in the MASP is considered dry during the 
wintertime (between May and August), and wet during the summertime (between December and March). During 
the summertime, the precipitation over southeastern Brazil is often affected by the South American Monsoon 
System (SAMS) (Carvalho et al., 2011). During the wintertime, on the contrary high-pressure systems develop to 
the east, over the Atlantic Ocean, producing strong subsidence, thermal inversions and clear skies. As a 
consequence, few precipitation events (low relative humidity) are observed over the MASP during this time, thus 
favoring the formation of aerosol particles (CETESB, 2019). 

2.2. The WRF-Chem model 

The Weather Research Forecasting with Chemistry (WRF-Chem) (Grell et al., 2005) model is a fully coupled 
meteorology-chemistry transport model supported by the National Center for Atmospheric Research (NCAR) to 
a worldwide community of users. The Model for Ozone and Related Chemical Tracers (MOZART-4, (Emmons 
et al., 2010)) is selected for the gas-phase chemistry, coupled with the Goddard Chemistry Aerosol Radiation and 
Transport (GOCART, (Chin et al., 2002)) for aerosol chemistry. MOZART-4 mechanism includes 85 gas-phase 
species, 12 bulk aerosol compounds, 39 photolysis rates, 157 gas-phase reactions, in addition to an updated 
isoprene oxidation scheme and a better treatment of Volatile Organic Compounds (VOCs) (Emmons et al., 
2010). Photolysis rates are calculated using the Fast Troposphere Ultraviolet Visible (F-TUV) photolysis scheme 
(Tie et al., 2003). GOCART is a bulk aerosol mechanism used to simulate the major tropospheric aerosol 
constituents such as: sulfur, dust, organic carbon (OC), black carbon (BC) and sea salt (Chin et al., 2002). No 
secondary organic aerosol (SOA) formation is treated in the GOCART model version used in this study. 
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2.2.1. Experiment design 

The WRF-Chem model version 3.9.1 is used to perform 5-day simulations with initialization from previous runs 
on a single domain with a horizontal resolution of 9 km as shown in Fig. 1. The modeling domain is centered at 
23.5°S and 46.3°W, is projected on a Lambert plane and consists of 150 grid points in the west-east direction, 
100 grid points in the north-south direction, and 35 vertical levels that extend from the surface up to 50 hPa (20 
km). Four different periods were selected according to the availability of observational data and favorable 
meteorological conditions for pollutant accumulation: a) from 00:00 UTC May 31 to 18:00 UTC June 30, 2017; 
b) from 00:00 UTC June 30 to 18:00 UTC July 31, 2018; c) from 00:00 UTC May 31 to 18:00 UTC June 30, 
2019 and d) from 00:00 UTC July 31 to 18:00 UTC August 31, 2019. The first 24 hours in each run are 
discarded as spin-up time. The meteorological initial and boundary conditions to drive the simulations are 
obtained from the National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) 
model at 0.25° horizontal resolution. For chemistry, the initial and boundary conditions are obtained from the 
Community Atmosphere Model with Chemistry model (CAM-Chem, (Lamarque et al., 2012)) at 0.9° x 1.5° 
horizontal resolution. These data have demonstrated the ability to represent tropospheric and stratospheric 
conditions including temperature structure and dynamics, using the MOZART-4 chemical mechanism (Emmons 
et al., 2010). Both NCEP GFS and CAM-Chem data are provided every 6 hours. The main physics and 
chemistry options used in this study are listed in Table 1. 

2.2.2. Input emissions 

As anthropogenic emissions over southeastern Brazil come mainly from ground transport (see Table S2 in the 
supplementary material), anthropogenic emissions from sectors other than ground transport (such as industrial 
and residential) are not included in the simulations. The ground transport emissions, specifically on-road 
vehicles, were derived from the bottom-up transport emission model described by Andrade et al. (2015). For 
more information, read section 2 in the supplementary material. Biogenic emissions are calculated on-line using 
the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006). MEGAN 
estimates the net terrestrial biosphere emission rates for different trace gases and aerosols with a global coverage 
of 1 km2 spatial resolution. Fire emission was derived from the Fire INventory from NCAR, hereafter referred to 
as FINN, as described by Wiedinmyer et al. (2011). This inventory provides fire emissions and plume rise 
characteristics of trace gases and aerosol particles from open biomass burning, including wildfires, agricultural 
fires, and prescribed burning, also on a global basis and resolution of 1 km2 (Freitas et al., 2007; Grell et al., 
2011). MEGAN and FINN emission maps for different gas and aerosol species are provided in the 
supplementary material, Figs. S18 to S21. 

2.3. Observational Data 
2.3.1. Ground-based observations 

In the State of São Paulo, a network of air quality stations is responsible for the control and monitoring of the air 
quality, operated by the Companhia Ambiental do Estado de São Paulo (CETESB) (CETESB, 2019). CETESB 
manages 63 automatic air quality stations (61 fixed and 2 mobile) and 22 manual stations. The air quality 
stations (hereinafter referred to as AQS) provide hourly information on meteorological and pollutant parameters, 
such as air temperature at 2 meters (T2m), relative humidity at 2 meters (RH2m), wind speed and wind direction at 
10 meters (WS10m and WD10m, respectively), and concentration of different air pollutants, such as nitrogen 
monoxide (NO), nitrogen dioxide (NO2), tropospheric ozone (O3), carbon monoxide (CO), fine particulate 
material (PM2.5), among others (CETESB, 2019). These air quality and meteorological data are continuously 
published on the Qualar website (https://qualar.cetesb.sp.gov.br/qualar/home.do). In this work, 60 AQS spread 
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out across the State of São Paulo, mainly over the MASP (Fig. 1 and Table S1 - supplementary material), were 
selected for the analysis. Also, as addition stations (see Table 2), a meteorological station of the IAG-USP, 
located in the Parque de Ciência e Tecnologia from the University of São Paulo (in the south-east side of the 
MASP), and a mobile air quality station, located 200 km northwest of the MASP, on the outskirts of Botucatu, 
were considered in this work to analyze the WRF-Chem model performance. Both stations provide hourly data 
of meteorological parameters and chemical species (see Table 2). Moreover, to analyze aerosol columnar 
information, the Aerosol Robotic Network (AERONET) network was considered. AERONET program provides 
solar and sky radiance measurements in different wavelengths (340, 380, 440, 500, 675, 870 and 1020 nm) at 
15-min sampling frequencies (Holben et al., 2001). To calculate the Aerosol Optical Depth (AOD) at 550 nm, 
solar direct measurements were used based on the Beer-Lambert-Bouguer law. For this work, we have 
considered four AERONET stations (see Table 2), a study period of six years (from 2014 to 2019) and data 
quality level 2.0 (cloud screened and quality-assured) to validate the WRF-Chem model simulations and the 
satellite aerosol retrievals. 

2.3.2. Total column observations 

Since atmospheric pollutants behave differently near the surface and far from it, the usefulness of satellite data to 
evaluate the WRF-Chem model is relevant. The Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensor, the Ozone Monitoring Instrument (OMI) and the Measurements of Pollution In The Troposphere 
(MOPITT) were considered to compare the simulated values of AOD, NO2 and CO, respectively. MODIS sensor 
measures the solar and terrestrial radiance, and through inversion algorithms, aerosol properties, including AOD 
are retrieved. These algorithms are: Dark Target (DT), Deep Blue (DB) and MAIAC. They estimate AOD values 
at 550 nm and at different spatial resolutions (1km, 3km, 10km and 1 degree) every 1-2 times per day. All of 
these products have level 2.0 data processing. For more details about these aerosol products, read the following 
articles (Kaufman et al., 1997, 2005a,b; Hsu et al., 2004, 2013; Lyapustin et al., 2018). On the other hand, OMI 
measures the radiation backscattered by the Earth's atmosphere and surface and uses different algorithms to 
retrieve atmospheric trace gases concentration, including NO2, both in the troposphere and stratosphere, at 13km 
x 24km spatial resolution (Boersma et al., 2011). Here, we have considered retrievals of geolocated tropospheric 
VCD (vertical column density) NO2 (in units of molecules cm-2) extracted from the Dutch OMI NO2 (DOMINIO 
v2.0) version 2.0 algorithm through the EUFP7 QA4ECV project. The DOMINIO data, Level 2 products, 
provide geophysical information for each and every ground pixel observed by the instrument. The product also 
contains intermediate results such as: a priori NO2 profile, averaging kernel, among others, which will be 
explained in the next subsection. MOPITT measures the thermal infrared (IR) radiation with a spatial resolution 
of about 22km x 22km. These radiances are then used to retrieve CO mixing ratios profile and total column 
amounts (Deeter et al., 2003). For this work, we used version 9.0 Level 3 MOPITT CO mixing ratios at 10 
pressure levels between the surface and 100 hPa, and with a spatial resolution of 1 degree. Another satellite 
product that will be compared to the WRF-Chem model outputs is the Global Precipitation Measurement (GPM) 
to analyze the daily accumulated precipitation over our study domain. The GPM mission provides global 
observations of rain and snow. The Integrated Multi-satellite Retrievals for GPM (IMERG) Final Run is an 
algorithm prepared to calibrate, mix and interpolate precipitation estimates from all passive-microwave 
instruments in the GPM Constellation (Huffman et al., 2015). IMERG covers the globe from 60°S to 60°N with 
a spatial resolution of 10km and a temporal resolution of 30 minutes and has three runs: early, late, and final. The 
early run (delay of 6 hours) employs morphing techniques that use the information from geostationary infrared 
data at a fine time scale to complete the gaps in coverage of microwave overpasses (Joyce et al., 2004). The late 
run (delay of 18 hours) allows additional microwave observations to be used in the morphing techniques. The 
final run (delay of 4 months), is adjusted to the monthly gauge measurements. In this study, we use version 6 
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GPM data to represent the final estimate of daily accumulated precipitation in mm (see Table 3). Almost all 
observational data have the same period as the WRF-Chem model simulations, except for aerosol products. AOD 
data was downloaded for a six-year period (2014 - 2019). 

2.4. Data processing 

The MODIS data validation has been made considering AOD data from AERONET stations, using the matching 
method. This type of method uses the closest pixel (granule of each satellite) to the location of an AERONET 
station and the AERONET data at an approximate satellite overpass time. Due to the lack of satellite and 
AERONET data and to increase the matchup data number, a spatiotemporal window has been adopted, following 
the approach devised by Ichoku et al., 2002. This methodology averages the satellite AOD data in a spatial 
window around the AERONET stations (1km, 3km and 10km) and the AERONET data is averaged in the 
temporal window centered on the satellite overpass time (±15, ±30 and ±60 minutes). The reason for choosing 
these spatial windows is because we use satellite data with a resolution of 1km up to 10km, so that all possible 
information can be considered (see Table 3). This comparison aims to show the best product to represent the 
aerosols over our domain and then compare it with the WRF-Chem simulations. 

The WRF-Chem model was executed considering the pre-processing tools shown in Fig. S1 in the 
supplementary material. Overall, the modeling framework has three principal components: pre-processing, 
processing, and post-processing. The pre-processing defines the modeling domain, interpolates static 
geographical data and masked surface fields to the model grid, and prepares the meteorological, background 
concentrations, and emission fields to be read during the numerical integration. The processing is a program that 
must correctly incorporate the external fields prepared during the pre-processing, and then accurately simulate 
the state and chemical composition of the atmosphere. Finally, in the post-processing we read the model outputs 
using python scripts. To evaluate the performance of the WRF-Chem model when reproducing the pollutant 
concentrations and AOD values, we first evaluate the simulated meteorological variables with observational data 
(from CETESB, IAG-USP, Botucatu and GPM mission), taking into account that local meteorological variables 
strongly affect the transport and mixing of trace gases and aerosols (Banta et al., 2005; Darby, 2005). Then, 
simulated pollutant concentrations and AOD values were compared with ground-based (CETESB and Botucatu) 
and atmospheric column (MODIS, OMI and MOPITT) data. Due to the large number of AQS, both observed 
and simulated parameters were grouped and then averaged assuming four categories of land use: regional urban, 
urban park, urban and industrial (see Table S1 in the supplementary material). Air pollutants and meteorological 
parameters from the WRF-Chem simulations are extracted for the closest grid points to the AQS locations. To 
compare with atmospheric column data, mainly for NO2 and CO, the model outputs must go through an 
appropriate treatment, since direct comparison between satellite retrievals with model data is not recommended 
(Kumar et al., 2012). This treatment comprises: (i) Due to the spatial resolution difference between the satellite 
and simulated data, it was necessary to perform a remapping of the gridded data. For NO2, the satellite data were 
adjusted to the spatial resolution of the model, while for CO, the simulated data were adjusted to the spatial 
resolution of the MOPPIT. (ii) Since the model outputs and the satellite data have different temporal resolution, 
simulated data closer to passage time of each satellite have been considered to perform the comparison. (iii) 
Then, the model data were mapped onto the pressure grids of the different instruments (OMI and MOPPIT). (iv) 
Finally, the spatially and temporally matched model results were transformed using the averaging kernel (A) and 
a priori profiles used in the satellite retrievals to obtain a model profile. This last procedure was performed using 
the following equations: 

𝐴𝑀𝐹 = 𝑤ℎ𝑒𝑟𝑒, 𝐴
𝑡𝑟𝑜𝑝 

= 𝐴. (1) 𝑌
𝑡𝑟𝑜𝑝 

𝐴
𝑡𝑟𝑜𝑝

. 𝑋
𝑡𝑟𝑜𝑝

, 𝐴𝑀𝐹
𝑡𝑟𝑜𝑝 
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𝑎
) (2) 𝑋

𝑟𝑡𝑣−𝑚𝑜𝑑𝑒𝑙 
= 𝑋

𝑎 
+ 𝐴(𝑋

𝑡𝑟𝑢𝑒−𝑚𝑜𝑑𝑒𝑙 

Equation (1) is applied for adjusting the WRF-Chem simulated tropospheric column NO2 abundances for 
comparison to OMI retrievals, while the equation (2) is used to transform the WRF-Chem simulated column CO 
abundances for comparison with MOPPIT. Atrop is the total column averaging kernel, AMF and AMFtrop are the 
air mass factors for the total columns and tropospheric columns, respectively, Ytrop is the transformed model 
profile and Xtrop is the tropospheric WRF-Chem NO2 profile interpolated to the OMI pressure grid. All these 
variables are extracted from the satellite data of the DOMINIO v2.0 product. Xrtv-model is the retrieved state vector 
and Xa and Xtrue-model are the a priori state vector and the true state vector, respectively. A (in the equation 2) is the 
retrieval averaging kernel matrix and has a size of 10x10. It represents the sensitivity of the retrieved profiles to 
the actual profiles (Kumar et al., 2012; Ruibin et al., 2022; Tang et al., 2020). For comparison with the satellite 
AOD data, simulated and satellite data were remapped to the gridded data. The spatial resolution of the satellite 
data has been adjusted to have the same grid as the model (or vice versa) and the simulated data close to the 
passage of each satellite were selected. For comparison with AERONET AOD at 550nm, the simulated AOD at 
550nm is derived from the WRF-Chem AOD at 300-, 400-, 600- and 1000-nm wavelengths, using the Angstrom 
equation (considering AOD at 400 and 600 nm). The same Angstrom equation was applied to AERONET AOD 
at 440 and 670 nm. In the case of precipitation data, both the model and the GPM provide data at the surface 
level. The simulated precipitation data was calculated by adding the "Accumulated total cumulus precipitation 
(RAINC)" and "Accumulated total grid scale precipitation (RAINNC)" outputs. These fields contain the total 
accumulated precipitation over the simulated period. Thus, the total accumulated precipitation is simply the sum 
of these fields (RAINC + RAINNC). Here, the model was also adjusted to the spatial resolution of the satellite 
by doing the remapping of the gridded data. In relation to the temporal resolution between the model and the 
satellite, the daily accumulated simulated precipitation was considered as the sum between 00:00 LT (Local 
Time) to 23:00 LT each day. These evaluations follow the performance benchmarks of Emery et al. (2017) and 
Monk et al. (2019), considering a simple and complex terrain (see Tables S3 and S4 in the supplementary 
material). The benchmarks for simple terrain were developed mostly for flat terrain and simple meteorological 
conditions. Instead, the benchmarks for complex terrain were developed for more complex conditions, 
considering mountainous terrain. The purpose of the benchmarks is to understand how good or bad our results 
are relative to other model applications run for the United States. We chose the most representative statistical 
indices (Appendix A) to compare them with these benchmarks. 

3. Results and Discussions 
3.1. Model performance for meteorological variables 

Overall, the model adequately represented the temporal variability and trends of T2m and RH2m throughout the 
study periods as shown in Figs. 2 and 3, and S2 to S6 in the supplementary material. The WRF-Chem model 
qualitatively captured the strong changes in T2m and RH2m observed in all study periods, although it failed to 
properly represent the maximum and minimum peaks. Simulated surface temperature underestimated (Regional 
urban: MB = -0.20°C; urban: MB = -0.33°C; industrial: MB = -0.74°C) and overestimated (Regional urban: MB 
= 0.35°C; urban: MB = 0.11°C; industrial: MB = 0.23°C) the observed values for most of June 2017 and August 
2019, respectively (see Table S5). However, in the urban park stations, the simulated surface temperature was 
overestimated in both June 2017 (MB = 0.08°C) and August 2019 (MB = 0.98°C). One of the reasons for this 
result could be the poor representation of land use considered by the model, which leads to higher temperatures 
than those measured by these AQS. In addition, the model and inventory resolution is an essential factor to 
recognize clearer emissions sources. The stations classified as urban park are Ibirapuera, Capão Redondo, Cid. 
Universitária-USP-Ipen and Itaquera (Table S1 in the supplementary material), all located near a green area 
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(between 158 – 300 km2), while the model classified it as urban and built-up category (Fig. 1 - right panel). 
Similar differences in surface temperature and relative humidity were also verified in the Botucatu and IAG-USP 
stations (see Tables 5 and S6 in the supplementary material). The model overestimated and underestimated the 
observed surface temperature and relative humidity, respectively, in the IAG-USP station for all periods. The 
model, in Botucatu, showed the same behavior as the urban park stations, underestimating the observed surface 
temperature in June 2019 (MB = -1.17°C) and overestimating the observed surface temperature in August 2019 
(MB = 0.47°C) (see Table 5). Regarding the wind speed and direction, Figs. 2 and 3, and S2 to S6 in the 
supplementary material, also show the comparisons between simulated and observed values. Both the simulated 
and observed wind speed had a strong diurnal variability, with higher values during the daytime and lower values 
during the nighttime. The simulated wind speed values ranged from 0.005 to 7 m s-1 , with a mean value of 3 m 
s-1 , indicating that winds were mostly weak during the study periods. The model overestimated (MB < 2 m s-1) 
the wind speed, with shifts in wind direction fairly well reproduced most of the time. Overall, in terms of MB 
(see Figure S5 in the supplementary material), we can see that only for wind speed, the model overestimated the 
observed values for all of the region types and periods. For the other meteorological fields, the model 
underestimated and overestimated the observed values. The simulated meteorological fields can be biased, with 
errors in characteristic varieties in seasonal and diurnal verification depending on the WRF model configuration 
and meteorological conditions. The over-predicting surface wind often results from imperfect land surface 
processes and resolving topography. This underestimation and/or overestimation are consistent with the large 
negative and/or positive bias in previous investigations (Martins L. D. et al., 2006, 2018; Vara-Vela et al., 2016, 
2018, 2021; Gavidia-Calderón et al., 2018, 2021). Worst and best model performance took place at urban park 
(including the IAG-USP station) and regional urban (including Botucatu station), respectively (see Figure S5 and 
Tables 5 and S6 in the supplementary material). 

Considering the benchmarks recommended by Monk et al. (2019) (Table S3 in the supplementary material), the 
WRF-Chem model fulfilled the expected benchmarks, mainly for the temperature, relative humidity and wind 
speed (shown in the Table 5 and Tables S5 and S6 in the supplementary material). For the wind direction, the 
model did not fulfill the expected benchmarks, mainly over industrial areas. The model’s performance evaluation 
for accumulated precipitation (Figs. 4 and 5) shows that the model was able to reproduce days with rain events 
on local and regional scale, although large differences in accumulated precipitation between observations and 
model simulations were observed. Clouds representation in models remains a challenging task, current models 
are not capable of quantitatively representing precipitation events (Tie et al., 2009; Freitas et al., 2021). 
Model-observation discrepancies are strongly associated with the misrepresentation of land use and stability 
(Molders et al., 2010), as well as with differences in geographical locations between model grid-points and AQS. 

3.2. Model performance for pollutants and AOD retrievals 
3.2.1.Comparison with ground-based measurements 

As shown in Figs. 6 and 7, and S7 and S8 in the supplementary material, the temporal variations and trends in 
NOx and O3 concentrations were well represented by the model. With the exception of O3, all the other pollutants 
had their observational concentrations significantly higher in urban areas than in rural areas, and this behavior 
was well reproduced in the simulations. For most periods (see Table 6), simulated NOx concentrations were 
underestimated in regional urban, urban and industrial areas, and were overestimated in urban parks. For 
model-based assessments of both urban and rural NOx concentrations, it is important to be able to simulate daily 
maximum urban and NOx rural background concentrations as well. In order to assess the model’s skill in 
reproducing these concentrations, we compare simulated diurnal cycles of NOx (Fig. S10 in supplementary 
material). The comparisons showed that the model was able to simulate the observed diurnal cycle in the 
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regional urban, urban and industrial areas, while it did not have a good performance at urban park area. The 
model overall overestimated the NOx concentrations in the urban park and urban areas around 7:00 and 19:00 LT 
(in the peak hours) and underestimated the observed values at urban areas during afternoon. Due to the low 
horizontal resolution, the model calculated unrealistic peaks of NOx concentrations in traffic hours at urban park 
areas. The contribution to the overestimating and underestimating during daytime might be related by various 
factors, such as emissions inventories, uncertainties in the meteorological fields and the model's limitations. Both 
the model and the emissions inventory resolutions play a key role in simulating urban and rural NOx 

concentrations during daytime. As more NOx is emitted at the streets, rather than at the edges of the city, the 
correct concentration can hardly be calculated with emission input data of a horizontal resolution of 9 km. 
Furthermore, the temporal profile used to distribute the emissions over the modeling domain is the same in all 
grid points with any emission value (see Figs S16 and S17 in the Section 2 in the material supplementary). 

Figure 8 shows a spatial distribution of surface NOx and O3 from CETESB stations and WRF-Chem simulations 
at 18:00 LT, which corresponds to the second rush hour (see Figure S10 in the supplementary material) .We can 
observe a good representation between both data during the four study periods. High concentrations of observed 
and simulated NOx were captured within MASP (urban areas), while low concentrations were observed outside 
the MASP (regional areas). These analyzes indicate that the use of the vehicle emissions inventory (see section 2 
in the supplementary material) was fairly well estimated on the MASP. The model was able to represent the O3 
spatial distribution, with both observations and simulations ranging from 90 to 120 µg m-3 . The simulated O3 

concentrations showed the best results in terms of correlation coefficient (R ≥ 0.79), reaching the goal 
performance benchmark suggested by Emery et al. (2017) (Table S4 in the supplementary material). This is 
consistent with previous studies, showing the good performance of the model when calculating O3 

concentrations over the State of São Paulo (e.g. Vara-Vela et al., 2016; Gavidia-Calderón et al., 2018). However, 
they also found small differences between the model and the observations, similar to this work. Here, O3 

concentration was overestimated throughout the study periods (𝑀𝐵= 22 µg m-3), mainly over regional urban and 
industrial areas. These discrepancies are basically due to the choice of the appropriate chemical mechanism. The 
bias between observed and simulated O3 concentration is consistent with the bias in NOx diurnal cycle 
concentration discussed above. The underestimation of O3 during the night in urban park and urban areas is 
consistent with an overestimation of NOx. However, the overestimation of O3 in the morning hours could be due 
to too much NO2 accumulated on the surface, which is photolyzed when the sun rises. Therefore, the model 
successfully reproduced the O3 diurnal pattern, indicating strong O3 build-up from sunrise to noontime (peak of 
90 µg m-3) and the predominance of titration chemistry and deposition losses at night. The model also 
reproduced the daily amplitude of O3 concentration changes at relatively cleaner stations such as Botucatu, where 
it is typically shown a less pronounced O3 diurnal variability due to reduced NOx emissions. The simulated O3 

concentrations agreed well with the high concentrations observed at Botucatu during August 2019 (Fig. 7). Part 
of these high O3 concentrations was caused by the regional transport from the MASP (Squizzato et al., 2021). A 
more detailed analysis will be discussed in the second part of this article. This result showed the importance of 
using comprehensive modeling tools to evaluate the impact of regional emission transport from large urban 
areas. 

Regarding simulated and observed CO and PM2.5 concentrations, they were significantly higher in urban than in 
rural areas, although the model underestimated the observed values for both pollutants in all stations. The 
underestimation of CO is directly related to the emissions inventory over our study area, while the bias of 
simulated and observed PM2.5 concentrations is related to the choice of aerosol mechanism used in the 
simulations (Tie et al., 2013; Mar et al., 2016; Vara-Vela et al., 2018). On the other hand, the model 
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underestimated the hourly concentrations of these pollutants most of the time (𝑀𝐵 of -0.28 ppmv for CO and 
-8.18 µg m-3 for PM2.5). It is important to mention that the model was able to represent the rapid increase in the 
concentrations during strong air pollution events (urban park and urban areas in Fig. 6). In relation to the diurnal 
cycle of CO and PM2.5 between the observed and simulated values, Fig. S11 in the supplementary material, 
shows that the model represented well the observed CO variability, calculating peaks of CO in traffic hours, 
mainly at urban areas. In terms of correlation coefficient, the daily PM2.5 concentrations reached the criteria (R ≥ 
0.40) and goal (R ≥ 0.70) performance benchmark suggested by Emery et al. (2017), with June 2017 showing 
the best result among all study periods (see Table 4). These results represent a great contribution to previous 
modeling studies (Martins et al., 2006, 2018; Vara-Vela et al., 2016, 2018, 2021; Gavidia-Calderón et al., 2018, 
2020) demonstrating that the model can satisfactorily represent the atmospheric dynamic, chemistry and 
boundary layer processes. 

3.2.2.Comparison with atmospheric column measurements 

Figs. 9 to 11, and S12 to S13 in the supplementary material show the simulated and observed column mass 
abundances of NO2 and CO, and AOD values over southeastern Brazil for the four study periods. The spatial 
discrepancies between simulated and observed fields are illustrated by the relative differences shown in the third 
column of these Figures. Both the model and satellite retrievals showed higher tropospheric NO2 VCD in regions 
of industrial activities and/or dense population (10 x 1015 molecules cm-2), within the MASP. Also, they showed 
lower values over the center of the State of São Paulo and less urbanized regions (by about 2 x 1015 molecules 
cm-2) (see first and second columns in Fig. 9). The model also captured the monthly decrease, similar to the 
OMI, from the first to the fourth study period. The spatial correlation averaged over the entire domain ranged 
between 0.64 (in June and August 2019) and 0.77 (July 2018), obtaining from moderate to high correlation 
coefficients (see also in Table 6). In terms of bias, it was demonstrated that the WRF-Chem underestimated the 
magnitude of the retrieved tropospheric NO2 VCD over most of the study domain for all study periods. Highest 
NMB (-68.09 %) and NME (68.92 %) values were found for August 2019. These large model-satellite 
differences were associated with the poor representation of the contribution of long-range transport of biomass 
burning from the Amazon which affected the air quality over the State of São Paulo, mainly during 19 and 20 
August 2019, as described in (Vara-Vela et al., 2021). Other sources of difference can arise from errors in 
simulating tropospheric NOx chemistry (Valin et al., 2011) and other anthropogenic emission sources such as soil 
NOx. 

The spatial distributions of simulated and MOPITT-retrieved CO VCD (integrated up to 100 hPa) are shown in 
Figs. 10 and S12. Both the model and satellite show a homogeneous spatial distribution with values of CO from 
1.1 up to 1.7 x 1018 molecules cm-2 during the afternoon (around at 14:00 LT - Fig.10) and evening (around at 
22:00 LT - Fig. S12) periods. The model slightly overestimated the satellite estimates for all study periods, with 
averaged MB of 0.14 x 1018 molecules cm-2 . A good spatial correlation between the model and satellite estimates 
were found, with an average correlation coefficient of 0.71 and a NMB < 10 %. The agreement between 
WRF-Chem and MOPITT is higher in July 2018 (NMB = 8.17 %) than June 2017 (NMB = 14.05 %). For 
August 2019, MOPITT CO data was not available. 

Regarding AOD, simulated values were compared against MODIS and AERONET retrievals. Looking at the 
comparison between WRF-Chem and MODIS AOD values (Figs. 11 and S13 in the supplementary material), 
both the model and MODIS sensor show low AOD values during all study periods. In addition, the model was 
not able to produce high AOD episodes (see Fig. 11). SOA formation is not treated in the aerosol module, and 
represents, together with an underestimation in the emissions inventory, the major sources of uncertainty in the 
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aerosol modeling. Domain-wide correlation ranged between 0.44 (Terra satellite) and 0.65 (Aqua satellite) in 
August 2019, and 0.70 (Terra satellite) and 0.75 (Aqua satellite) in July 2018 (see Table 7). As discussed above, 
the model did not represent the contribution of long-range transport of biomass burning in August 2019. This 
reflects the low correlation between the model and MODIS. The simulated AOD values were lower than MODIS 
estimates, with an averaged NMB of -39.15 % and -24.25 %, for Terra MODIS and Aqua MODIS, respectively. 

On the other hand, due to the limited AERONET data availability, we compared the AOD values of both models, 
MODIS sensor and AERONET network (Fig. S14). Fig. S14 in the supplementary material shows boxplots of 
the WRF-Chem, Terra-Aqua and AERONET AOD values for June 2017 over the AERONET stations. We can 
observe that the average values for all of the points registered at São Paulo, SP-EACH and Itajuba stations, 
estimated via the WRF-Chem model, were in general underestimated. For the Terra satellite, i.e. during morning 
overpasses, the AOD values at São Paulo and SP-EACH stations presented lower variability than AERONET 
retrievals, while the opposite was observed during Aqua overpasses. Among the gas and aerosol analyzed 
parameters, the PM2.5 and AOD are the most difficult to simulate, as aerosol life processing depends on multiple 
atmospheric processes such as secondary organic aerosol (SOA) formation (Kanakidou et al., 2005). Knowledge 
gaps in aerosol modeling in terms of formation and aging processes, including aerosol feedback effects on 
meteorology and radiation, represent other sources of uncertainty (Vara-Vela et al., 2021). As the temporal 
profile used to distribute the emissions over the modeling domain is the same, this limitation can lead to possible 
mismatches between model predictions and satellite observations in regard to the timing of peak of AOD values 
at any particular time and location. 

Besides emissions and meteorology, the choice of the chemical mechanisms plays an important role in the 
simulation of air pollutants. For example, Vara-Vela et al. (2016) and Gavidia-Calderón et al. (2018) using the 
WRF-Chem chemical mechanisms Regional Acid Deposition Model version 2 (RADM2; (Chang et al., 1990)) 
and Carbon-Bond Mechanism version Z (CBM-Z; (Zaveri et al., 1999)), respectively, and emission approaches 
similar to that used in this study, have found that the model underestimated and overestimated, respectively, the 
O3 concentrations at several AQS across the MASP. In general, an underestimation of NOx and CO was related 
to a lack of emission sources, while an overestimation in the concentration of these pollutants could be related to 
either inaccurate representations of emissions or meteorology, or a combination of both (Kota et al., 2014; 
Changhan et al., 2020; Nascimento et al., 2020). In addition to inaccurate representations of emissions and 
meteorology, model bias in simulating O3 and PM2.5 depends on the photochemistry, VOCs speciation 
assumptions used in the chemical mechanisms and also the atmospheric dynamics and photochemistry to 
determine the gross production of those secondary pollutants (Nascimento et al., 2022). Most chemical 
mechanisms make use of lumping approaches to reduce the number of chemical reactions, thus avoiding the 
treatment of a huge number of chemical species (Zaveri et al., 1999; Sarkar et al., 2016). On the other hand, the 
use of a more simplified gas-phase chemistry, photolysis and dry deposition schemes in chemical transport 
models does not guarantee an improvement in the model predictions (Vara-Vela et al., 2016, 2018; 
Gavidia-Calderón et al., 2018). 

4. Conclusions 

A six-year study (2014-2019) period has been selected to validate five MODIS AOD products against 
AERONET estimates over southeastern Brazil, with focus on the Metropolitan Area of São Paulo. Considering 
the greater availability of MODIS data and using a matching methodology, we have shown the best MODIS 
product to represent AOD values over southeast Brazil, mainly for dry periods (section 3 in the supplementary 
material). Results showed that the Dark Target product at 3 km and 10 km spatial resolution better represented 
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the AERONET AOD estimates compared to the other products. WRF-Chem AOD simulations were compared to 
the Dark Target product with 10 km x 10 km spatial resolution to minimize the numerical instabilities. 
One-month WRF-Chem simulations at 9 km for June 2017, July 2018, and June and August 2019, were then 
evaluated against the Dark Target product at 10 km and observational data from ground-based platforms over 
southeastern Brazil. In relation to ground-based measurements, the strong changes in temperature and relative 
humidity at 2 m observed in the four study periods were satisfactorily represented by the model, although it 
failed in representing the maximum and minimum peaks. The model underestimated the temperature over 
regional urban, urban and industrial areas, while it overestimated the temperature over urban park areas for most 
of the periods, with the exception of August 2019. The model overestimated the temperature with an average 
bias of less than 1°C for all periods, a result that is in line with previous WRF-Chem studies over southeast 
Brazil. Simulated wind speed and direction at 10 m were well represented by the model in terms of spatial and 
temporal variation and trends. Both observed and simulated wind speed were more intense during the daytime 
and relatively calm during nighttime. Model-observation discrepancies are strongly associated with the 
misrepresentation of land use and stability, as well as with differences in geographical locations between model 
grid-points and air quality stations. However, our modeling results fulfilled the expected benchmarks 
performance. 

Regarding air pollutants, the model was able to represent the temporal variations and trends of most of the 
chemical species, including CO, O3, PM2.5 and NOx. However, model-observation discrepancies were also 
noticeable, with NOx underestimation over regional urban and urban stations, and overestimation over industrial 
stations. The O3 was the best air pollutant to be simulated in terms of temporal variability, with large and small 
amplitudes observed over the MASP (as urban area) and Botucatu (as rural area) being well represented by the 
model. The model satisfactorily represented the high O3 concentrations observed at Botucatu station, indicating 
the importance of using comprehensive modeling tools to evaluate the impact of large urban centers emissions in 
the regional transport of pollutants. The CO concentrations were significantly underestimated most of the time. 
Overall, an underestimation of NOx and CO is related to a lack of emission sources, while an overestimation in 
the concentration of these pollutants could be related to either inaccurate representations of emissions or 
meteorology, or a combination of both. Similar to CO pollutants, the simulated PM2.5 concentrations were also 
underestimated most of the time. In addition to inaccurate representations of emissions and meteorology, model 
bias in simulation of O3 and PM2.5 depends on the photo-chemistry and VOCs speciation assumptions in the 
chemical mechanisms. 

The comparison between atmospheric column observations of NO2 and CO from OMI and MOPPIT instruments, 
respectively, and WRF-Chem during the four study periods showed that the model agreed well with satellite 
estimates, even though the model underestimated or overestimated the retrieved concentrations in some cases. 
Both the model and OMI captured higher NO2 VCD concentrations in regions with industrial activities and/or 
dense population and lower NO2 VCD concentrations over less urbanized areas. Regarding CO column data, 
both the model and the satellite showed a homogeneous spatial distribution during all study periods, resulting in 
high correlation coefficient (mean: R = 0.71). For AOD, both WRF-Chem and MODIS (Terra and Aqua) 
detected higher AOD values over the ocean and lower AOD values over the continent. However, on days with 
high MODIS AOD values over the continent, the model was not able to represent them properly. The inclusion 
of sea salt emissions in the model simulations contributed to a better representation of aerosol loadings over the 
ocean, while, over the continent, an underestimation of AOD is to a large extent due to no inclusion of SOA 
formation. The spatial correlation coefficients ranged from 0.44 and 0.75. The WRF-Chem model showed 
deficiency in representing aerosols at the four specific AERONET stations, with lower correlation coefficients 
compared to those found for satellite estimates. Discrepancies between model and observations at site-specific 
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locations at both surface and total-column can be also related to a misrepresentation of local conditions, not only 
in terms of emissions but also in terms of land-use and atmospheric stability. Overall and in spite of 
model-observation discrepancies, we can conclude that the WRF-Chem model was able to detect high aerosol 
concentration events at regional scale. Model underestimations are in general related to an underestimation in the 
emissions calculation, highlighting the need for more accurate aerosol emissions representation over a 
metropolitan area with complex and distinct anthropogenic contributions. Based on the findings of this study, the 
use of up-to-date and high spatiotemporal resolution anthropogenic emission inventories is recommended for 
forecasting the concentrations and the diurnal fluctuations of atmospheric pollutants, especially near the urban 
centers where the majority of population lives. 

This work represents a first effort combining different tools: ground-based observations, numerical modeling and 
remote sensing, to improve the understanding of how pollutant emissions impact the air quality over the 
Metropolitan Area of São Paulo and inland areas (which will be discussed in detail in the second part of this 
work). Consequently, future efforts for a regional and/or local study should consider local emission inventories 
as they provide better results compared to regional inventories. In addition, monitoring air quality in less 
urbanized areas must be an ongoing effort to validate numerical modeling of long-range transport of emissions 
from large urban areas such as the Metropolitan area of São Paulo. 
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Appendix A – Performance metrics 

The focus of the model evaluation is mainly to verify the capacity of the model to effectively reproduce the 
spatial and temporal distribution of pollutant concentrations observed over the State of São Paulo, in particular 
over the MASP. Therefore, statistical evaluation metrics such as the Pearson correlation coefficient (R), root 
mean square error (RMSE), mean bias (MB), normalized MB (NMB), average MB (𝑀𝐵), mean error (ME), 
normalized ME and index of agreement (IOA), were used to evaluate the WRF-Chem model performance on a 
regional scale. These statistical indicators were calculated using the following equations (Emery et al., 2017): 
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mean values. "N" is the number of paired samples. R = 1 is a perfect correlation; R = 0 is totally uncorrelated. 
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Figures 

Figure 1: (a) The terrain height and (b) land use category map of the model domain (D1) considered in the WRF-Chem model and the 
locations of the CETESB and AERONET monitoring stations. 

Figure 2: The observed and simulated T2m, RH2m, WS10m and WD10m variability in the four categories of land use: Regional urban, urban 
park, urban and industrial, during June 2017. The measured and simulated results are represented by the black and red line, respectively. 
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Figure 3: The observed and simulated meteorological variability at the IAG-USP and Botucatu stations during June 2017 and August 
2019, respectively. The bars represent the daily accumulated precipitation. The measured and simulated results are represented by the 
black and red line, respectively. 

Figure 4: The observed and simulated daily accumulated precipitation (mm) variability at the IAG-USP and Botucatu stations during 
June 2017 and August 2019, respectively. The bars represent the daily accumulated precipitation. The measured and simulated results are 
represented by the black and red line, respectively. 
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Figure 5: Spatial distribution of daily accumulated precipitation (mm) from WRF-Chem model and IMERG Final Run V.06 product over 
southeastern Brazil for 13 and 14 June, 2017. The black square represents the zoom of the MASP. The gray dots represent the AQS 
distributed over our study area and the magenta star represents the location of the IAG-USP station. 

Figure 6: The observed and simulated NOx, O3, PM2.5 and CO concentrations variability in the four categories of land use: Regional 
urban, urban park, urban and industrial, during August 2019. The measured and simulated results are represented by the black and red 
line, respectively. 
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Figure 7: The observed and simulated NOx, O3, PM2.5 and CO concentrations variability at Botucatu station during August 2019. The 
measured and simulated results are represented by the black and red line, respectively. 

Figure 8: Simulated and observed (colored circles) monthly spatial distribution of surface NOx (first column) and O3 (second column) at 
18:00 LT, which corresponds to the second rush hour over southeastern Brazil for June 2017, July 2018 and June and August 2019. The 
colored circles represent the CETESB stations distributed in the state of São Paulo and colored stars represent the Botucatu station. The 
blue outlines, in the columns, represent Botucatu city and the MASP. 
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Figure 9: Simulated (first column) and observed (second column) mean spatial distribution of tropospheric NO2 VCD during 14:00 LT 
over southeastern Brazil for June 2017, July 2018 and June and August 2019. The third and fourth columns represent the relative 
difference and correlation between both tools. The blue lines, in the first three columns, represent Botucatu city and the MASP and the 
gray space indicates missing data. 

Figure 10: Simulated (first column) and observed (second column) mean spatial distribution of total CO VCD during 14:00 LT over 
southeastern Brazil for June 2017, July 2018 and June 2019. The third and fourth columns represent the relative difference and correlation 
between both tools. The blue lines, in the first three columns, represent Botucatu city and the MASP region. The gray diamond shape 
space indicates missing data. 
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Figure 11: Simulated (first column) and observed (second column) mean spatial distribution of AOD values around at 10:30 LT, over 
southeastern Brazil for June 2017, July 2018 and June and August 2019. The third and fourth columns represent the relative difference 
and correlation between both tools. The blue lines, in the first three columns, represent Botucatu city and the MASP and the gray space 
indicates missing data. 
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Tables 

Table 1: Selected WRF-Chem model configuration options. 
Atmospheric Process WRF-Chem option 

Cloud microphysics Morrison 2-Moment 

Boundary Layer Yonsei University 

Cumulus clouds Grell 3D Ensemble 

Longwave radiation RRTMG 

Shortwave radiation RRTMG 

Land surface Unified Noah Land Surface Model 

Surface layer Revised MM5 

Gas-phase chemistry MOZART 

Aerosol chemistry GOCART 

Photolysis Madronich F-TUV photolysis 

Emissions Model 

Anthropogenic LAPAt pre-processors (Andrade et al., 2015) 

Biogenic MEGAN 

Fire FINN 

Sea Salt GOCART sea salt emissions 

Aerosol Optical Properties Based upon volume approximation 

Table 2: Additional stations on our study domain. 
Stations Geo location Latitude (◦) Longitude (◦) Period Parameter 

IAG-USP Urban Park -23.65 -46.62 
June 2017, July 2018, T2m, RH2m, WS10m and 
June and August 2019 Precipitation 

Botucatu Regional Urban -22.85 -48.43 
June and August 2019 

Meteorological: T2m, WS10m, 
WD10m and Precipitation. 

Pollutants: NOx, O3,CO and 
PM2.5. 

* São Paulo Urban Park -23.56 -46.74 2014-2019 
AOD values 

* SP-EACH Urban Park -23.48 -46.50 2016-2019 AOD values 

∗ Cachoeira 

Paulista 
Regional Urban -22.68 -45.00 2016-2019 AOD values 

∗ Itajuba Regional Urban -22.41 -45.45 2014-2019 AOD values 

∗ are AERONET stations and their data are freely available on the AERONET website (https://aeronet.gsfc.nasa.gov/ ) 
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Table 3: Satellite Configurations. 
Characteristics \ 

Satellite 
Terra Aqua Aura GPM 

Sensor MODIS MOPITT MODIS OMI IMERG 

Product MODxx MOP03T MYDxx DOMINIO v2.0 GPM_3IM ERGDF 

Level Level 2 Level 3 Level 2 Level 2 Level 3 

Local equator crossing 

time 
10:30 10:30/22:30 13:30 13:45(± 15 minutes) -

Spatial Resolution 1, 3 and 10 km 1 degree 1, 3 and 10 km 13x24 km2 10x10 km2 

Temporal Resolution 1 day 1 or 2 per day 1 day 1 day 1 day 

Repeat Cycle 16 days 16 days 16 days 16 days -

Pollutants AODa COb AODa cN O2 Precipitationd 

ahttps://ladsweb.modaps.eosdis.nasa.gov/search/ 
bhttps://asdc.larc.nasa.gov/data/MOPITT/MOP03T.009 
cwww.temis.nl 
dhttps://disc.gsfc.nasa.gov/datasets/GPM 3IMERGDF 06/summary 

Table 4: Performance statistics of the validation between predicted pollutants and measurements by the AQS. 
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Type 

Region 

of Chemical 

species 

June - 2017 

n R MB NMB ME NME 
RMS 

E 
IOA 

July - 2018 

n R MB NMB ME NME RMSE IOA 

NOx (1h) 697 0.69 -5.33 -26.63 8.47 42.32 11.70 0.76 721 0.78 -12.35 -51.74 13.06 54.74 18.18 0.62 

Regional 

Urban 

O3 (1h) 

CO (1h) 

669 0.84 

685 0.57 

21.01 

-0.45 

74.30 

-69.15 

21.08 

0.45 

74.56 

69.15 

24.34 0.75 

0.51 0.45 

721 0.89 

721 0.62 

27.35 

-0.32 

68.31 

-61.95 

27.41 

0.32 

68.46 

62.12 

30.07 

0.41 

0.75 

0.51 

PM2.5 (1h) 697 0.43 -9.68 -64.29 9.75 64.72 11.16 0.45 721 0.23 -16.04 -63.01 16.83 66.10 19.52 0.45 

PM2.5 (24h) 30 0.43 -9.90 -64.38 9.90 64.38 10.44 0.37 31 0.11 -15.41 -60.79 15.68 61.85 16.86 0.33 

NOx (1h) 668 0.40 19.92 52.77 36.65 97.09 52.84 0.58 719 0.42 -0.41 -0.84 33.69 69.19 48.13 0.65 

Urban 
O3 (1h) 696 0.69 10.52 54.28 17.93 92.48 25.56 0.75 721 0.82 11.45 37.51 18.76 61.45 24.96 0.87 

Park 
CO (1h) 564 0.32 0.28 -45.87 0.36 51.63 0.53 0.49 506 0.45 0.07 14.54 0.32 69.07 0.46 0.66 

PM2.5 (1h) 697 0.52 -4.88 -29.18 8.71 52.09 11.67 0.66 721 0.30 -7.65 -25.58 20.79 69.51 33.52 0.47 

PM2.5 (24h) 30 0.71 -5.36 -30.40 6.30 35.77 8.66 0.66 31 0.52 -7.82 -26.26 12.74 42.78 15.65 0.68 

NOx (1h) 697 0.48 -3.76 -6.26 34.02 56.59 45.38 0.70 721 0.58 -27.89 -39.16 37.88 53.19 55.44 0.64 

O3 (1h) 697 0.72 10.74 49.25 16.16 74.11 22.95 0.77 721 0.85 16.61 53.08 19.51 62.34 24.0 0.86 

Urban CO (1h) 697 0.60 -0.36 108.48 0.40 138.86 0.51 0.64 721 0.64 -0.56 -57.71 0.57 58.73 0.77 0.58 

PM2.5 (1h) 697 0.50 -9.52 -48.66 10.95 56.01 13.98 0.55 721 0.36 -13.37 -38.97 22.59 65.87 32.91 0.56 

PM2.5 (24h) 30 0.70 -10.24 -49.74 10.24 52.18 12.88 0.52 31 0.58 -13.13 -38.76 14.97 44.20 18.25 0.66 

NOx (1h) 668 0.57 0.17 0.68 14.73 58.08 21.06 0.74 188 0.65 -16.77 -46.86 19.61 54.81 30.43 0.62 
Industrial 

O3 (1h) 565 0.79 22.61 146.53 23.70 153.58 30.60 0.72 689 0.84 28.64 84.22 31.04 91.28 36.22 0.80 

June - 2019 August - 2019 

NOx (1h) 649 0.72 -9.24 -44.41 9.91 47.63 14.64 0.63 718 0.81 -5.68 -36.50 6.82 43.82 10.69 0.74 

Regional 

Urban 

O3 (1h) 

CO (1h) 

649 

649 

0.90 

0.61 

26.83 

-0.27 

81.50 

-59.81 

26.83 

0.27 

81.52 

59.92 

28.82 0.73 

0.35 0.49 

718 0.88 

708 0.73 

16.63 

-0.26 

37.83 17.03 

-61.11 0.26 

38.74 

61.27 

20.52 

0.33 

0.84 

0.49 

PM2.5 (1h) 649 0.48 -11.31 -64.26 11.34 64.47 13.18 0.49 718 0.24 -9.65 -57.89 10.07 60.42 12.65 0.46 

PM2.5 (24h) 29 0.45 -12.03 -65.26 12.03 65.26 13.14 0.38 30 0.06 -9.67 -57.98 9.79 58.70 11.36 0.43 

NOx (1h) 609 0.27 8.01 23.92 30.20 90.13 45.98 0.51 665 0.42 7.19 25.23 25.25 88.62 44.48 0.61 

Urban 
O3 (1h) 649 0.84 10.22 37.61 16.98 62.51 22.32 0.86 718 0.79 4.03 10.32 16.04 41.09 21.05 0.87 

Park 
CO (1h) 612 0.36 -0.10 -19.63 0.27 54.06 0.46 0.55 484 0.50 -0.13 -25.93 0.27 54.99 0.53 0.59 

PM2.5 (1h) 648 0.28 -4.89 -27.70 10.39 58.89 16.62 0.49 718 0.35 -3.98 -27.41 8.95 61.69 12.19 0.52 

PM2.5 (24h) 29 0.46 -5.90 -31.55 8.18 43.73 10.20 0.63 30 0.63 -4.06 -27.83 5.84 40.03 7.56 0.63 

NOx (1h) 649 0.48 -27.45 -41.94 36.98 55.98 53.51 0.57 718 0.65 -13.22 -27.49 26.12 54.31 38.87 0.76 

O3 (1h) 649 0.86 16.79 66.67 19.24 76.38 23.60 0.82 718 0.80 10.70 30.25 16.59 46.89 21.46 0.84 

Urban CO (1h) 649 0.60 -0.53 -61.34 0.54 61.84 0.71 0.53 718 0.76 -0.34 -54.18 0.35 55.74 0.51 0.61 

PM2.5 (1h) 649 0.39 -12.84 -55.57 14.25 61.65 19.39 0.53 718 0.49 -7.88 -45.34 10.51 60.54 14.49 0.53 

PM2.5 (24h) 29 0.39 -15.17 -59.60 15.17 59.60 19.36 0.48 30 0.61 -7.93 -45.52 9.02 51.76 11.17 0.58 

NOx (1h) 588 0.61 -8.72 -33.46 13.32 51.12 23.39 0.64 655 0.67 -3.06 -15.24 10.36 51.58 17.23 0.77 
Industrial 

O3 (1h) 561 0.81 31.82 138.68 31.95 139.25 37.90 0.72 686 0.81 30.98 122.17 31.41 123.87 37.10 0.71 
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The units are O3 and PM2.5 in [µgm−3], NOx in [ppb] and CO in [ppmv]. 

Table 5: Performance statistics of the predicted values at the Botucatu station with the measured results. 

Variable June 2019 August 2019 

Meteorological n R MB NMB ME NME RMSE IOA n R MB NMB ME NME RMSE IOA 

T2m 505 0.88 -1.17 -5.85 1.64 8.16 2.11 0.90 599 0.88 0.47 2.60 1.98 10.91 2.57 0.94 

WS10m 505 0.61 -1.57 -51.22 1.59 51.73 1.72 0.46 599 0.76 -1.84 -45.76 1.86 46.17 2.04 0.57 

WD10m 505 - 6.17 3.86 47.87 30.21 - - 599 - 6.41 4.09 41.54 26.51 - -

Pollutants n R MB NMB ME NME RMSE IOA n R MB NMB ME NME RMSE IOA 

NOx 308 0.60 0.59 8.02 2.26 49.64 3.13 0.76 579 0.66 1.40 45.33 2.34 75.82 3.36 0.75 

O3 501 0.74 7.46 10.76 12.01 17.33 15.29 0.82 588 0.68 -0.57 -0.85 11.31 16.78 15.32 0.82 

CO 412 0.16 -0.45 -75.85 0.45 75.85 0.48 0.35 600 0.45 -0.55 -82.07 0.55 82.07 0.57 0.34 

PM2.5 496 -0.10 -2.39 -29.77 3.74 46.61 5.18 0.24 412 0.40 -0.47 -6.84 2.77 40.06 3.48 0.65 

The units are T2m in [◦C], WS10 in [ms−1] and WD10 in [degree]. For O3 and PM2.5 in [µgm−3], NOx in [ppb] and CO in [ppmv] 

Table 6: Performance statistics of the validation between model-simulated and satellite-retrieved data for the four periods. 
Variable Periods n R MB NMB ME NME RMSE IOA 

June 2017 14751 0.71 -1.07 -66.57 1.09 68.08 1.21 0.59 

NO2 July 2018 

June 2019 

14751 

14751 

0.77 

0.64 

-0.80 

-0.95 

-53.46 

-64.32 

0.86 

0.97 

57.21 

65.85 

0.96 

1.14 

0.71 

0.57 

August 2019 14751 0.64 -1.07 -68.09 1.08 68.92 1.20 0.53 

Variable Periods 
n R MB 

Daytime 

NMB ME NME RMSE IOA n R MB 

Nighttime 

NMB ME NME RMSE IOA 

June 2017 125 0.60 0.18 14.05 0.18 14.05 0.19 0.38 126 0.59 0.11 8.30 0.12 8.68 0.13 0.58 

CO July 2018 126 0.70 0.11 8.17 0.11 8.17 0.13 0.57 126 0.87 0.11 7.55 0.11 7.55 0.11 0.67 

June 2019 126 0.82 0.13 9.69 0.13 9.69 0.13 0.55 126 0.77 0.10 7.36 0.10 7.40 0.11 0.65 

Variable Periods 
n R MB 

Terra 

NMB ME NME RMSE IOA n R MB 

Aqua 

NMB ME NME RMSE IOA 

June 2017 14056 0.54 -0.03 -37.91 0.03 39.92 0.03 0.56 14161 0.76 -0.01 -15.64 0.01 25.87 0.02 0.84 

AOD July 2018 

June 2019 

14317 

14319 

0.70 

0.53 

-0.04 

-0.03 

-44.66 

-36.94 

0.04 45.0 

0.03 39.69 

0.05 

0.04 

0.60 

0.57 

14240 0.75 

13849 0.69 

-0.03 

-0.01 

-35.34 

-15.38 

0.03 37.54 

0.02 27.82 

0.04 

0.02 

0.71 

0.80 

August 2019 14182 0.44 -0.04 37.09 0.05 40.06 0.08 0.47 14056 0.65 -0.03 -29.89 0.04 36.08 0.06 0.60 
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